On Objects with a Semilocal Endomorphism Rings in Finitely Accessible Additive Categories


BERKTAŞ M. K.

Algebras and Representation Theory, cilt.18, sa.5, ss.1389-1393, 2015 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 5
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1007/s10468-015-9545-8
  • Dergi Adı: Algebras and Representation Theory
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1389-1393
  • Anahtar Kelimeler: Accessible categories, Camps-Dicks theorem, Grothendieck categories, Pure Goldie dimension
  • Uşak Üniversitesi Adresli: Evet

Özet

It is proved that if A is an object in a finitely accessible additive category A such that A has finite pure Goldie dimension and that every pure monomorphism A→A is an isomorphism, then its endomorphism ring EndA(A) is semilocal.