Nonperturbative harmonic generation in graphene from intense midinfrared pulsed light


Taucer M., Hammond T., Corkum P., Vampa G., Couture C., Thiré N., ...More

Physical Review B, vol.96, no.19, 2017 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 96 Issue: 19
  • Publication Date: 2017
  • Doi Number: 10.1103/physrevb.96.195420
  • Journal Name: Physical Review B
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Uşak University Affiliated: Yes

Abstract

In solids, high harmonic radiation arises from the subcycle dynamics of electrons and holes under the action of an intense laser field. The strong-field regime opens new opportunities to understand and control carrier dynamics on ultrafast time scales, including the coherent dynamics of quasiparticles such as massless Dirac fermions. Here, we irradiate monolayer and few-layer graphene with intense infrared light to produce nonperturbative harmonics of the fundamental up to the seventh order. We find that the polarization dependence shows surprising agreement with gas-phase harmonics. Using a two-band model, we explore the nonlinear current due to electrons near the Dirac points, and we discuss the interplay between intraband and interband contributions to the harmonic spectrum. This interplay opens new opportunities to access ultrafast and strong-field physics of graphene.