Metric spaces with unique pretangent spaces. Conditions of the uniqueness


ABDULLAYEV F., Dovgoshey O., Küçükaslan M.

Annales Academiae Scientiarum Fennicae Mathematica, cilt.36, sa.1, ss.353-392, 2011 (SCI-Expanded, Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 1
  • Basım Tarihi: 2011
  • Doi Numarası: 10.5186/aasfm.2011.3623
  • Dergi Adı: Annales Academiae Scientiarum Fennicae Mathematica
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.353-392
  • Anahtar Kelimeler: Cantor set, Logarithmic spiral, Metric spaces, Pretangent spaces, Uniqueness of pretangent metric spaces
  • Uşak Üniversitesi Adresli: Hayır

Özet

We find necessary and sufficient conditions for an arbitrary metric space X to have a unique pretangent space at a marked point a ∈ X. Applying this general result we show that each logarithmic spiral has a unique pretangent space at the asymptotic point. Unbounded multiplicative subgroups of C* = C\{0} having unique pretangent spaces at zero are characterized as lying either on the positive real semiaxis or on logarithmic spirals. Our general uniqueness conditions in the case X ⊆ R make it also possible to characterize the points of the ternary Cantor set having unique pretangent spaces.