Journal of Labelled Compounds and Radiopharmaceuticals, cilt.62, sa.13, ss.874-884, 2019 (SCI-Expanded)
The clinical impact and accessibility of 99mTc tracers for cancer diagnosis would be greatly enhanced by the availability of a new, simple, and easy labeling process and radiopharmaceuticals. 5-Fluorouracil is an antitumor drug, which has played an important role for the treatment of breast carcinoma. In the present study, a new derivative of 5-Fluorouracil was synthesized as (1-[{1′-(1′′-deoxy-2′′,3′′:4′′,5′′-di-O-isopropylidene-β-D-fructopyranose-1′′-yl)-1′H-1′,2′, 3′-triazol-4′-yl}methyl]-5-fluorouracil) (E) and radiolabeled with 99mTc. It was analyzed by radio thin layer chromatography for quality control and stability. The radiolabeled complex was subjected to in vitro cell-binding studies to determine healthy and cancer cell affinity using HaCaT and MCF-7 cells, respectively. In addition, in vitro cytotoxicity studies of compound E were performed with HaCaT and MCF-5 cells. The radiochemical purity of the [99mTc]TcE was found to be higher than 90% at room temperature up to 6 hours. The radiolabeled complex showed higher specific binding to MCF-7 cells than HaCaT cells. IC50 values of E were found 31.5 ± 3.4 μM and 20.7 ± 2.77 μM for MCF-7 and HaCaT cells, respectively. The results demonstrated the potential of a new radiolabeled E with 99mTc has selective for breast cancer cells.