Commutative convolution of functions and distributions


Fisher B., TAŞ K.

Integral Transforms and Special Functions, cilt.18, sa.10, ss.689-697, 2007 (SCI-Expanded, Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 10
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1080/10652460600935965
  • Dergi Adı: Integral Transforms and Special Functions
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.689-697
  • Anahtar Kelimeler: Convolution, Dirac delta function, Distribution
  • Uşak Üniversitesi Adresli: Hayır

Özet

The commutative convolution f *g of two distributions f and g in D' is defined as the limit of the sequence {(fτn)* (gτn)}, provided the limit exists, where {τn} is a certain sequence of functions n in D converging to 1. It is proved that equation presented for 0,1,2, , where B denotes the Beta function.