JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, cilt.34, sa.27, 2023 (SCI-Expanded)
In this study, electrospun polyacrylonitrile (PAN)/polypyrrole (PPy) nanofibers (NFs) coated quartz crystal microbalance (QCM) were investigated for their sensing characteristics against six different volatile organic compounds (VOCs): chloroform, dichloromethane, carbon tetrachloride, benzene, toluene and xylene. SEM, TEM, FT-IR and TGA analysis were carried out for the characterization of PAN/PPy nanofibers and characterization results of PAN/PPy NFs showed that these nanofibers were morphologically well-arranged and straightforward with a cylindrical shape with the average fiber diameter of 253.17 ± 27 nm. Among all the gas measurement tests, dichloromethane displayed the highest response values for PAN/PPy coated QCM sensors. When the reproducibility of kinetic studies for PAN/PPy NFs coated QCM sensors were examined, the most repetitive results were obtained by this QCM sensor during dichloromethane investigation and the diffusion coefficients of VOCs for the first and second regions increased with the order of xylene < toluene < benzene < carbontetrachloride < chloroform < dichloromethane. The sensitivities of the PAN/PPy nanofibers-coated QCM sensor against organic vapors are determined between 4.71 and 6.17 (Hz ppm−1) × 10–4. As a result, PAN/PPy nanofibers exhibited high sensitivity and selectivity for VOCs sensor applications, especially for dichloromethane.