Ukrainian Mathematical Journal, cilt.70, sa.2, ss.165-181, 2018 (SCI-Expanded, Scopus)
We study the possibility of application of Faber polynomials in proving some combinatorial identities. It is shown that the coefficients of Faber polynomials of mutually inverse conformal mappings generate a pair of mutually invertible relations. We prove two identities relating the coefficients of Faber polynomials and the coefficients of Laurent expansions of the corresponding conformal mappings. Some examples are presented.