Multidimensional Linear Functional Connected with Double Strong Cesàro Summability


Patterson R. F., Savas R., SAVAŞ E.

Indian Journal of Pure and Applied Mathematics, cilt.51, sa.1, ss.143-153, 2020 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51 Sayı: 1
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1007/s13226-020-0390-z
  • Dergi Adı: Indian Journal of Pure and Applied Mathematics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, INSPEC, zbMATH
  • Sayfa Sayıları: ss.143-153
  • Anahtar Kelimeler: Discrete functional analysis, double functions, P-convergent, Pringsheim, sequences spaces
  • Uşak Üniversitesi Adresli: Evet

Özet

In 1964 Borwein presented functional characterization of the normed linear spaces wp and Wp. These two spaces are clearly linked to Cesàro summability [C, 1] in particular it should be noted that a sequence x in wp if and only if x is Cesàro summable. The goal of this paper includes extension of these notions to double function space thus producing multidimensional analog of Borwein’s results.