Photocatalytic investigation of textile dyes and E. coli bacteria from wastewater using Fe3O4@MnO2 heterojunction and investigation for hydrogen generation on NaBH4 hydrolysis


Ameen F., Aygun A., SEYRANKAYA A., Elhouda Tiri R. N., Gulbagca F., KAYNAK İ., ...Daha Fazla

Environmental Research, cilt.220, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 220
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.envres.2023.115231
  • Dergi Adı: Environmental Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Bacteria inactivation, Catalytic study, Fe3O4@MnO2 NPs, Hydrolysis, Photocatalyst
  • Uşak Üniversitesi Adresli: Evet

Özet

Various impurities found nowadays in water can be detrimental to human health. This work focused on utilizing Fe3O4@MnO2 nanocomposite for cleaning organic contaminants from water, including rhodamine B (RhB) and Escherichia coli (E. coli). Analysis methods such as XRD, UV–vis, TEM, and FTIR were used to describe the nanocomposite. The results showed that the developed nanocomposite has good photocatalytic activity against pollutants in wastewater. The E. coli was destroyed after 90 min, and the RhB photodegradation rate was 75%. Moreover, the Fe3O4@MnO2 efficiency as a catalyst for producing hydrogen as an alternative energy source was tested. According to the calculations, the nanomaterial's turnover frequency, activation energy, enthalpy, and entropy are 1061.3 h−1, 28.93 kJ/mol, 26.38 kJ/mol, and −128.41 J/mol.K, respectively. Four reusability tests were completed, and the average reusability was 78%. The obtained data indicated the excellent potential for the developed Fe3O4@MnO2 nanomaterial to act as an adsorbent, thus representing an alternative to the classical depollution methods. This study showed that nanoparticles have a photocatalytic effect against pathogenic bacteria and RhB azo dye in polluted waters and offer an effective catalytic activity to produce hydrogen as an alternative energy source.