A novel triazine‒bearing calix[4]arene: Design, synthesis and gas sensing affinity for volatile organic compounds


HALAY E., AÇIKBAŞ Y., Capan R., BOZKURT S., Erdogan M., Unal R.

Tetrahedron, cilt.75, sa.17, ss.2521-2528, 2019 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 75 Sayı: 17
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1016/j.tet.2019.03.027
  • Dergi Adı: Tetrahedron
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2521-2528
  • Anahtar Kelimeler: Calix[4]arene, Chemical sensors, Quartz crystal microbalance, Triazine, Volatile organic compounds
  • Uşak Üniversitesi Adresli: Evet

Özet

A novel triazine-calix[4]arene conjugate was designed and synthesized with the aim to study gas sensing against volatile organic compounds (VOCs) such as dichloromethane, chloroform and carbon tetrachloride. This novel compound was fully characterized by spectroscopic techniques such as FTIR, 1 H and 13 C NMR along with HRMS and BET analysis. The triazine based calix[4]arene organic materials were fabricated onto quartz glasses and quartz crystal substrates to form a thin film chemical sensor element by using Langmuir-Blodgett (LB) technique. Quartz Crystal Microbalance, UV–Visible Spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy techniques were employed to characterize all these LB thin film layers. Fick's Equations were used for analyzing the swelling process of LB thin film sensor and diffusion coefficient values of organic vapours for swelling were obtained. The initial experiments have revealed that new triazine appended calix[4]arene derivative exhibited an effective chemical gas sensor characteristic with a large response to dichloromethane vapour.